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Abstract

A large number of commercial simulation tools support performance oriented studies of

complex computer and communication systems. Reliability of these systems, when desired,

must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (i)

substantial extra effort is required to create the reliability model, (ii) through modeling error

the reliability model may not reflect precisely the same system as the performance model, (iii)

as the performance model evolves one must continuously reevaluate the validity of assumptions

made in that model. In this paper we describe an approach--and a tool that implements this

approach--for integrating a reliability analysis engine into a production quality simulation based

performance modeling tool, and for modeling within such an integrated tool. The integrated

tool allows one to use the same modeling formalisms to conduct both performance and reliability

studies. We describe how the reliability analysis engine is integrated into the performance tool,

describe the extensions made to the performance tool to support the reliability analysis, and

consider the tool's performance.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract

No. NAS1-19480 while the first author was in residence at the Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001





1 Introduction

Discrete-event simulation is emerging as the dominant means of designing and evaluating the per-

formance of complex computer and communication systems. A thriving industry of simulation

tool and model developers exists to support these developments (e.g., see the recent tools survey

[9]). By performance we mean metrics like buffer usage, CPU utilization, and throughput. The

simulators evaluate these quantities by directly emulating the behavior of the modeled system, e.g.,

pushing packets through network models. Many of these systems have stringent reliability require-

ments: consider the systems that control fly-by-wire aircraft, telephone switching systems, or the

FAA flight management systems. However, it is difficult to use a performance-oriented simulator

to assess reliability with any accuracy. Failures happen rarely, a direct simulation that mixes per-

formance events and reliability events must run for a long long time (if no tricks are employed). In

special cases there are exceptions. Importance sampling[2] is a way of accelerating the occurrence

of failures and "fixing" the statistics. However, as powerful as it can sometimes be, importance

sampling requires the modeler to be expert in its application; it is not yet appropriate for general

use on general models.

Existing reliability modeling tools require a whole different view-point of the modeled system

than do performance modeling tools. In practice, someone trained in reliability modeling is called

upon to develop a system's reliability model. We believe that because of this, reliability modeling

is not used as extensively as it might be if its methods were naturally integrated with performance

modeling. Towards this end, since 1989 we have developed experimental reliability modeling tools

with the goal of being able to analyze very large models, requiring a minimum degree of involvement

by the modeler [4, 5, 3, 10]. Believing that goal to be achieved, we set out to develop a tool that

incorporates our analysis techniques, but can be easily integrated into model-development front-

ends. This paper describes the results of that effort.

The mathematical details of the approach we describe are for reliability analysis. Availability

analysis is also of wide-spread interest, but imposes a much larger storage requirement to save

generated states. However, all that is required to support availability analysis in our framework is a

different algorithm for managing and generating the underlying state-space. We have accomplished

this already with a separate interface solution engine that exploits the Collective memory available

in workstation networks [1]. That engine already uses the same interface between modeling tool

and solution engine that we describe here, in the context of reliability modeling.

Section 2 introduces the concepts we use with a discussion of Markov modeling. Next, Section

3 describes the interface to the general purpose analysis. Section 4 describes the extensions we

made to the BONES (Block Oriented Network Simulator) Designer simulation environment to

support integration of reliability analysis. Section 5 discusses types of integrated analysis that

are supported by our approach. Section 6 then describes some run-time optimizations that, when

applicable, substantially accelerate reliability model solution time. Section 7 details experiments

we conducted with the integrated tool, and section 8 presents our conclusions.



2 Markov Modeling and Analysis

In Markov modeling, one describes the modeled system's temporal behavior as a mathematical

construct called a continuous time Markov chain (CTMC). At every instant in time the CTMC

is in some state that describes the essential characteristics of the modeled system. For instance,

the state of a computer system that starts with n identical processors and 2 spares might be

the vector (g, r), where g is the number of processors currently "good" (i.e., not yet failed), and

r is the number of remaining spares. Alternatively one might describe the state as a vector of

binary digits, each one indicating the state of a particular computer or spare. Transitions occur,

moving the CTMC from one state into another. If while in state (5, 1) a processor fails and is

replaced by the spare, the CTMC modeling the system makes a transition from (5, 1) to (5, 0).

In a general CTMC there may be a number of different transitions possible from any given state.

In reliability models, a transition usually corresponds to a component fMlure or completion of a

repair activity. The CTMC model ascribes a rate _i,j to the transition between state i and state

j (i and j here are integer codes for state vectors). If this transition corresponds to the failure of

some component, then _i,j is the failure rate of that component (which is the inverse of its mean-

time-to-failure). The random component lifetime defining the i to j transition is exponentially

distributed, with mean 1/_i,j. CTMCs assume that the different activities that define transitions

are mathematically independent. As a consequence, the random time the system remains in state

i before any transition occurs is exponentially distributed with rate ,_i = _ati j ,_i,j. The different

transitions possible from state i can be thought of as competing with each other to achieve the

next transition. The probability that a transition to state j succeeds in this competition (i.e., the

random completion time of its activity is least among all competitors) is )%j/)_i.

The set of all states the system might possibly enter is called the state-space. State-spaces

are frequently envisioned as directed graphs, with nodes representing states, and arcs representing

transitions. Arc labels describe the corresponding transition rates. The behavior of the modeled

system in time is viewed as tracing a path through the state-space graph. As we have already

seen, the time the CTMC spends in a given state is a random variable, and the choice of transition

out of a state is also random. If we then specify some specific amount of time T and an initial

starting state (starting implicitly at time 0), the path a system chooses over time [0, T] is random.

For any given state i, there is some probability pi(T) that the system enters state i before time

T. Each state in a reliability-focused CTMC can be classified as representing system failure, or

not. We may assume that once the CTMC has entered a failure state, it does not leave. Letting S

denote the set of all failure states, the system unreliability is the probability that the system enters

some state in S within the mission time T. Figure 1 illustrates the state-space associated with the

processor-spare system similar to that described above. The failure rate of each processor is _; the

spares are "cold", meaning that they don't fail, but do require a mean time 1/r to be integrated

into the system. We assume the repair time is exponentially distributed. The system fails if there

are fewer than two working processors, or if a failure occurs while a repair is under way. The state

is (working,spares_status), where working is the number of functional processors, spares are
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Figure 1: Markov chain diagram of simple system with replacements

the number of spares, and status is 'a' (active) or 'r' (repair) to reflect whether the system is

undergoing repair. We illustrate a system with three initial processors and two initial spares.

Reliability tools based on Markov models vary in how they allow a modeler to describe the

state-space, and in how the necessary probabilities are computed. Very rarely is a state-space

directly specified as a graph. Because state-spaces of interesting systems are quite large, most tools

instead use some modeling formalism from which state-spaces can be derived automatically, e.g., a

stochastic Petri Net. Whatever the formalism, given any configuration that maps to CTMC state

i, one must be able to determine all configurations that map to all CTMC states j reachable from

i in a single transition, and must be able to determine the associated transition rates. Given this

ability, the entire state-space can (in principle) be constructed (at least, if it is finite). A list of

states to explore is first initialized with an initial state, as is a table of previously discovered states.

Then, one repeatedly removes a state from the list and generates all of its immediate descendents.

The table is consulted for each descendent to determine whether it has already been generated.

If not, the descendent is entered into the table, and is placed on the working list. The entire

state-space is found in the table once the working list is empty.

Techniques vary for computing system unreliability from the state-space graph. They all share

the drawback that state-spaces easily become huge. Even with virtual memory, solution speed

plummets on large models. Recognizing this as the key obstacle to solving very large models

automatically, we adopted an approach that uses dramatically less memory. Rather than build and

analyze the state-space in two separate steps, we combine the two functions and retain only the

amount of state information needed to support the analysis. The technique has made possible the

analysis of models that simply could not be solved using other methods. The methods described

in the remainder of this section are developed in detail in [3]. The basic ideas are sketched in the

following paragraphs.

Suppose we are given a path p through the state-space, beginning at the initial state. If we

let 79p be the event that the system chooses the transitions on that path (rather than any of

the competitors) and let T be the event that it does so within time T, we have by definition of

conditional probability

Pr{'P v and T} = Pr{_%} er{T I/:'v}. (1)

Now Pr{T'v} is something we can easily calculate. Each transition on the path has some specific



probabilityof beingchosenover its competitors; Pr{7_p} is just the product of all of these proba-

bilities. We can also compute Pr{T I _'p}, although it can be more involved. Given that the path

was chosen, the probability that the system traverses it in time no greater than T is the probability

that the sum of times spent in each state on the path is no greater than T. The time spent in

each state is an exponential random variable, but the exponentials associated with the different

states may have different means. The probability distribution constructed by summing heteroge-

neous exponentials is well understood, and one Can numerically evaluate the probability needed.

An alternative method is to use faster means of computing an upper bound on the probability [11].

The essential point is that given a path and all transition rates out of nodes on that path, we can

compute the probability in equation (1). The only memory storage required is that needed to store

the sequence of states, and the transition rates. Notice that the system unreliability is precisely

the sum of probability (1) over all paths p whose terminal state is in S.

We capitalize on the last observation by interweaving a depth-first state-space generation ac-

tivity with model analysis activity. The algorithm creates and extends path records. A path record

contains the terminal state on some path, plus all the rate information needed for computing prob-

ability (1). We initialize a working list of path-records with one that describes the initial state. In a

loop, we remove the first element of the working list, and determine whether the terminal state is in

S. If so we compute probability (1) and add the result to a running total. If not, we generate all the

descendents of the terminal state and their associated rates. For each one we create a path-record

by extending the path-record of their common parent with additional transition information. Each

new state replaces the parent as the path record's terminal state, and the list of new path-records

is inserted at the front of the working list. This process continues until the working list is empty,

at which point we know that every path from the initial state to some state in ,_ has been explored

and its contribution to system unreliability has been accounted for.

The algorithm above will explore the entire state-space. This is usually unnecessary. If the

probability of a path p that does not end in ,5 is lower than a cut-off threshold, we may choose

not to expand it. Probability (1) for that path p is an upper bound on the probability of reaching

8 by any other path q which extends p by one or more states. Instead of expanding p, we add

probability (1) to an accumulating pruning bound. At the end of the computation, the sum of the

pruning bound with the computed system unreliability gives an upper bound on the true system

unreliability.

This general approach has the consequence of recomputing a state i for every unpruned path

that includes it. We have essentially exchanged the cost of storing the state-space with a cost of

recomputing it. A rule of thumb is that if you have approximately n transitions out of each state,

and a search depth of d, then O(n d) path-records will be generated. We have solved models where

n _ 1000 and d _ 3; we have solved models where n ,_ 100 and d _ 6.

There are two additional mechanisms for analyzing even larger state-spaces. One is to use

parallel processing. This is relatively easy to do, because the path-searches are disjoint. For ex-

ample, one need only distribute the descendents of the initial state among processors. Each one

initializes its working list with its assigned set of descendents, and then carries on independently
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of theothers.At terminationthe processorsaggregatetheir individualpruningboundsandunreli-
ability probabilities.Wehavealsoimplementedmoresophisticatedschemesthat employdynamic
load-balancing.

A secondmechanismis to foregoexhaustiveanalysis,and acceptstatistical estimatesof the
systemunreliability. This can be donewith Monte Carlo style analysis. The idea here is to
randomlysamplea path throughthestatespaceuntil eitherpruning,or encounteringa statein S.

Upon terminating the expansion of a path, probability (1) is computed and is used as one "sample".

The process is repeated, each time starting from the initial state, to construct a set of statistically

independent samples. Their sample mean is a point estimator of the system unreliability; standard

statistical techniques are used to construct confidence intervals about this mean.

It is important to see that the techniques we've described for generating and analyzing Markov

state-spaces are independent of the formalism from which the CTMC is derived. We can separate

mathematical evaluation of system unreliability from the concerns of deciding what the state-vector

is, what a state's descendents are, and whether a state is in S. The Solution Engine Interface

described next allows this separation.

3 Solution Engine Interface

The solution algorithm we've described interweaves state-space generation (which lies in the model-

ing formalism domain) and state-space analysis, which is not provided by the modeling formalism.

We have developed a means of integrating an implementation of our solution method into general

modeling tools, particularly discrete-event simulators. We accomplish this through a fully-specified

message-passing protocol that sits between the modeling tool and our solution engine. The proto-

col sets up the solution engine as a "master" process that queries the modeling tool as a "slave"

process. Clearly some integrating mechanisms must be resident in the modeling tool, a specific

case of this is described in the next section. References [6, 7, 8] describe how the interface engine

was integrated into an entirely different analysis package, ADEPT. The remainder of the present

section discusses the interface protocol.

The solution engine does not have any notion of what the CTMC state represents. The modeling

tool will be responsible for defining the CTMC states; to the solution engine a state is simply a block

of memory. The solution engine does not have any idea of what constitutes a failure state, as that

depends on the model. Similarly, the solution engine does not know how to find the descendents

of a given state; that too is model dependent. What the solution engine can do is to query the

modeling tool to provide answers to questions like "is this a death state?". The interface protocol

defines a set of queries the solution engine may make, and the responses the modeling tool provides.

At the beginning of an analysis, the solution engine requires a number of initialization param-

eters. For instance, it needs to know whether the analysis will be exhaustive or Monte Carlo, it

needs to know the mission time, it needs to know the cut-off threshold, it needs to be given a

copy of the initial state. Once initialized, the solution engine enters a control loop whose body is

repeated for every path-record pulled off the working list. First, the path-record's terminal state
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Figure 2: Interface between modeling tool and the Interface Solution Engine

(again, just a block of memory to the solution engine) is passed to the modeling tool with the

command to LOAD the state, and to determine whether the state represents a "notable" state

(e.g., one that may not indicate system failure, but is one for which wants probability estimates

anyway). For its part, the modeling tool must load the system-state passed-to it, and make the

determination required. The corresponding response is passed back to the solution engine, and the

appropriate probability calculation is made as a consequence. The interface engine then requests

that the modeling tool determine whether the current system state represents system failure. If

the answer is in the affirmative, the solution engine uses the path-record information to compute

probability (1), and control returns to the top of the loop. Otherwise, the solution engine applies

the pruning test: if the path is pruned then a calculation for the pruning bound is made, and

control returns to the top of the loop. If the state passes both the death and pruning tests, the

solution engine then asks the modeling tool to generate all descendents of the loaded state. The

modeling tool's response to this query is to generate the descendent states, passing them back to

the solution engine, each one tagged with the associated transition rate and (possibly) auxiliary

information that is not necessary for the unreliability calculation. Receiving these, the solution

engine creates a path-record for each, places the group of them at the front of the working list, and

returns to the top of the control loop.

The interface between solution engine and modeling tool is evidently simple. The number of

types of messages that pass between them is small. Figure 2 illustrates the interface. The protocol

logic on both sides of the interface is simple. The solution engine is encapsulated as a C function.

On each call a formated message is passed in. A finite state machine parses and processes the

message, producing as output a message for the modeling tool. Since the whole of the solution

engine is just a C function, it can be embedded in any modeling tool that allows integration of user

defined C functions.

In addition to probability computations, the solution engine also provides a way of conducting

automated failure modes and effects analysis (FMEA). For, a common model expansion paradigm



is to essentiallyfail a componentandtracktheeffectsthroughthe model.Thesetof changesthat
transformamodelcanbestoredaspartof apath-record,andbeappendedasapathexploresdeeper
into thestate-space.In fact,manyviewthis latter capabilityasmoreimportantthanthereliability
numbersthemselves.Sincethe FMEA activity sits directly on top of the reliability calculation,
onecanactuallyorderthe importanceof eventsequencesusingthe computedprobability for that
sequence,and storeonly the most probableones. It shouldalsobe noted that this approach
accountsfor failuresdependenton sequencedependencies(e.g. failureof componentA followed

later by failure of component B fails the system whereas failure of B followed by failure of A does

not), and so the approach has more modeling power than more traditional solution methods--like

fault trees--that do not.

The solution engine interface, as described, gives a way of processing a very general CTMC,

provided that the CTMC is defined elsewhere. We turn next to a discussion of how a commercial

modeling tool was used to provide that definition.

4 Integration into BONES Designer

The Solution Interface Engine requires that the modeling environment be endowed with the capa-

bility to parse and respond to commands asking it to

• completely reset the state of its reliability model,

• analyze the existing state of the reliability model, and determine whether the system has

failed, or has entered some "notable" state,

• generate all descendents of the current (non-failed) state.

Provision of these capabilities requires that two fundamental issues be addressed. One is a

matter of control, the other a matter of representation of model state. As we approached BONES

Designer, we looked for features of the tool that would satisfy these requirements. To understand

our solution, we must first sketch some relevant Designer characteristics.

BONES Designer is a graphically oriented design tool where one describes a system in terms of

interconnected "components", that appear as boxes or icons on the screen. Every component has

a local environment which defines its interface to the rest of the model. The environment consists

of

• input and output ports, through which data is passed to the module to activate an evaluation

of the module,

• event-lists, which may also pass data and activate evaluations but through a less graphical

linking process,

• parameters for passing constants into and out of a component (e.g., a service rate for a queue

is passed in, an ASCII name for the component might be passed out by a separate parameter),
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Figure 3: An example component in Designer

• memories, which are read/write locations.

Figure 3 illustrates how a component appears in a Designer model, and illustrates an example of

each of these environment variables. "inputp" is an input port, "outputp" is an output port; the

other examples are likewise given names reflecting function. The up-arrow on "Parameter" and

"Event List" indicate that these entities are to be exported as part of the component's external

environment. "Memory" is local, not visible outside of the component, as indicated by the square

around its symbol. Connections are made explicitly by directing the contents of components' output

ports to other components' input ports. The tool uses a data-flow evaluation paradigm. A signal

(which may be a user-defined structured data type) enters a component at an input port, and may

cause other signals to leave through output ports, possibly after some time delay. Events placed on

event-lists may also pass data and trigger evaluation. Event lists, memories, and parameters may be

made part of the module's externally visible environment, or may be strictly local to the component.

Exported entities can be linked at higher levels in the model. For instance, if components A and B

have a common parent component, that parent may have a memory to which a memory exported

by A is linked, and to which a memory exported by B is linked.

The functionality provided by a component may be expressed itself as a network of intercon-

nected components (and so the single iconic view is from a higher point in the hierarchy), or the

component may be a "primitive" that does not decompose any further. BONES Designer comes

with a large component library. A basic library provides commonly used primitives, one may also

purchase other libraries of already developed subsystems that are specialized for certain network

types.

The functionality of every primitive is expressed as C or C+ + functions that manipulate internal

Designer data structures and call internal Designer routines. Designer supports development of

custom primitives nicely; a user describes the interface of the primitive (e.g. input/output ports),

and Designer generates a function template that serves as the basis for the customized primitive.

A primitive has three functions to specify. One is called at initialization, when a simulation model

is first run. Another is called whenever the component's environment calls for it to respond to

some input, e.g., when a signal arrives on an input port. A third is called when the simulation
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terminates.
Customprimitivesprovidethehooksweneedto integratereliabilityanalysisinto BONESDe-

signer.First, considerthe InterfaceEngineitself, andthe logic that interfaceswith it. It maybe
broughtinto a modelwith a singleicon,whichexportsfewerthan10eventlists and parameters.
The coderepresentedby this iconis substantial,eventhoughits interfaceto the rest of Designer
modelis verymodest.But_fromtheDesigneruser'spoint of view,thereliabilityengineis brought
in simply by placing an instantiation of this interface engine in the Designer model, and linking to

the event-lists it exports.

Now consider the hooks within the actual Designer model, e.g., the system state vector. We need

to be able to quickly push state vectors into and out of the Designer model. Our reliability library

contains primitives for expressing state variables (single integers) and for reading and writing those

variables. A user includes a StateVariable primitive wherever it is natural in the model to specify

a component of the system state vector. To read from and write to that variable one includes the

appropriate primitives, and links their exported memories to that of the StateVariable. That

memory does not contain the actual state value, as one might think. Instead, it contains the index

of that state variable in an array of integers that is unseen from within the Designer model. To

copy in or out the entire system state vector we need only copy to or from that array. As it is a

contiguous block of memory, this can be done very quickly. To read from or write to an individual

element of the state vector, we need only to know its position in this array--the value found in the

StateVariable memory.

Another key primitive in our library is ScheduleTrigger, one that exports an event-list, and

contains one output port. This primitive's event list gets exported to be linked with one of several

event-lists defined by the Interface Engine. Just as the StateVariable primitive provided the data

hook into Designer, ScheduleTrigger provides the control hook. For instance, it is the modeler's

responsibility to provide a computation that determines whether the system state is in a failed

configuration. ScheduleTrigger provides the means by which the Interface Engine can initiate a

death-state test evaluation. The Designer submodel for testing system status is made to depend

upon receipt of a trigger signal to initiate it. Output from a ScheduleTrigger provides that trigger,

and the primitive's event-list is linked to one exported by the Interface Engine primitives for the

express purpose of initiating death-state testing logic. Naturally, that logic will include primitives

to read StateVariable values to determine the system's status. The same type of mechanism

is used for initiating evaluation of notable conditions, and for initiating generation of descendent

states. Another set of primitives report the results of these tests to the logic that interfaces with

the Interface Engine.

At initialization, each primitive executes its own initialization function. In the case of the

ScheduleTrigger primitives, each ones' initialization places itself on the event-list to which it is

linked. Later, when the Interface Engine schedules an event for an event-list, that event activates

evaluation of each component that is linked to the event-fist. For instance, a model may have a

number of different notable state conditions. To have each one evaluated individually, the Inter-

face Engine simply schedules an event on the event-list to which notable state ScheduleTrigger



componentshaveattachedthemselves.Eachis executedin turn, and eachreportswhetherits
particularnotablestateconditionis satisfied.

Owingto the intricaciesof generatingandreportingdescendentsystemstate-vectors,wehave
built higherlevelcomponentsfromthis setofprimitives.Thesecomponentshidealmostentirelythe
detailsofsystemstatemanipulation.Forinstance,manyreliabilitymodelscontainrepresentationof
physicaldevicesthat areeitheroperationalor failed,andwhichfailwith somedevice-specificfailure
rate. Aswith theexamplein section2,wemaymodelacollectionof thesewith asinglestatevariable
that enumeratesthe numberof workinginstances;at any instancethere is a specificaggregate
transitionrateassociatedwith one of those devices failing. Each such failure is a transition in the

underlying Markov chain. We have further hidden the details of reliability analysis from the user by

building several different types of Device components that model k-out-of-n subsystems (i.e., the

subsystem is considered operational if at least k out of n devices are operational). Parameters to

a device component include the number of devices n, the subsystem failure threshold (k), and the

common device failure rate. For some versions of Device a user simply includes these components

and links their exported event-lists to the appropriate Interface Engine event-lists. The implicit

transitions and their interaction with the Interface Engine are hidden within the component design.

There is a $tateVariable and logic to report whether a transition is possible, and logic to decrement

the StateVariable when a transition is triggered.

However, some versions of Device are not completely transparent. For instance, there may be

cases where one wants the execution of a Device transition to allow further system state processing

beyond just modification of the single StateVariable in the Device. These variations export

event-lists; evaluation of additional logic may thus be triggered by linking in a ScheduleTrigger

primitive to the exported event-list. Other Device versions include input/output ports for more

directed reporting of Device transition. For these, a signal is placed on all output ports when the

subsystem the device represents transitions to a failed state (i.e., the number of operational devices

there is less than k). Some run-time optimizations can take advantage of propagating this sort of

information around.

An important aspect of the reliability model processing is that in no way is simulation time

advanced. None of the components that are evaluated advance the simulation clock. To achieve this

one must understand a number of subtleties involving the sequencing of component evaluations.

We omit a discussion of these, as they are not essential to understanding generally how the Interface

Engine is integrated into Designer.

5 Integrating Reliability and Performance

Reliability models of systems are usually expressed at a higher level of abstraction than are perfor-

mance oriented models. The toolset we've developed supports the co-existence of a reliability model

at one level of abstraction, and a performance model at another. For example, consider a highly

reliable subsystem comprised of four identical but independent devices. A performance model of

this system may go into some detail concerning interconnections between the four devices, in order
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to assess the cost/performance of different voting architectures. That level of detail is likely to be

undesirable in the reliability model, where viewing the subsystem as a 2-of-4 device may suffice.

Our tool extensions allow one to include both the reliability model, and the performance model, in

the same place. This is illustrated in Figure 4. The upper portion is the simple reliability model.

We illustrate here a version of the k-of-n module where one connects modules together bidirection-

ally in order to effect some automated state-space reduction techniques. The reliability model in

the upper portion mirrors the performance model, but at a higher level of abstraction. Each model

has four sets of inputs and one output, but the reliability model avoids the complications of how

one actually builds a 2-of-4 device. Still, the two models coexist side-by-side in the same context.

As the performance model changes, it is natural to change the reliability model correspondingly. If

desired, one can link them, through the exported StateVariable memory. We have experimented

also with merging the two representations more directly, attempting to use the same communica-

tion paths for both reliability and performance. However, BONES Designer handling of connection

types prohibited a general solution. One way of using a joint model of this type is to provide a

"on-off" switch which enables or disables the Interface Engine processing, thereby selecting either

performance or reliability analysis.

Another one of the benefits of embedding reliability modeling capability into a discrete-event

simulation engine is that it allows one to use performance measures to describe notable events,

system failure, or even state transition. For example, overly long control signal latency through
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a network could define system failure, e.g. in a fly-by-wire flight control system. To determine

whether the system in a given "reliability" state is safe relative to a performance-based criterion,

one can execute a discrete-event simulation whose behavior depends on that state to determine

whether the performance criterion is met. Embedding the reliability model within a performance-

oriented tool allows one to expand the description of system safety beyond what is typically provided

in reliability tools.

This idea 1 is illustrated in Figure 5, where three k-of-n subsystems are in series. Each one

models some part of a network, and for the purposes of illustration we suppose that the delay time

of a message through a subsystem is inversely proportional to the number of working components.

All blocks shown are from the standard Designer library except for ScheduleTrigger, ReadState,

k-of-n, ReportDeathState and ReportNoDeathState. The Interface Engine schedules eval-

uation of ScheduleTrigger to initiate the death state test. The trigger generated propagates to

three components. One of these, TNow, places the value of the simulation clock on its output, a

value which is then read and stored by the RealLoealMem component. The trigger also prompts

AbsDelay, but its response requires two inputs, the second of which has not yet arrived. The

trigger also activates ReadState, which reads the state of the first k-of-n system, and sends it to

evt, which converts the integer into a Real, then passes that value to 1/R which inverts the value

and passes it as the delay parameter to AbsDelay. After the specified delay, this module produces

a triggering output to the next stage. In this fashion a trigger is delayed three times, each delay

being a function of the reliability state. As the trigger emerges from the last stage, it prompts a

remeasurement of the current simulation clock, and a recall of the measurement made when the

trigger was first generated. The two clock values are differenced and sent to a comparison module

which prompts ReportDeathState if the difference exceeds the safety threshold, and prompts

ReportNoDeathState if not.

While this example is too simple to be practically useful, it does illustrate the central point--the

definition of reliability itself may depend on performance aspects, and in a setting such as ours such

problems can be approached.

6 Optimizations

The tool described in this paper is actually a second generation integration of Designer and our

Interface Engine. The first generation tool was used several times in Boeing to evaluate experimental

flight control architectures. System sizes were large, several hundred components. Within that

setting a particular form of system evaluation was common. The system architects wanted to know

the probability that a control surface was not under control of the pilot. This condition could be

translated into the existence of electrical paths between key points in the architecture. Consider

Figure 6, which provides a very much simplified view of a fly-by-wire flight control system. There is

redundancy in sensors, in actuators, and in data transport. There is also considerable redundancy

1The example discussed here is not yet supported in our tool extensions. The mechanisms needed to supported it

are understood, and our next version of the extensions will contain them.
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Figure 5: Reliability's dependence on performance

hidden within the Primary Flight Computer (PFC). As system components fail, paths involving

the failed components cannot establish needed connections. The system is operational if at least

one sensor can communicate with the PFC, the pilot input can communicate with the PFC, and

the PFC can communicate with at least one actuator. Taking this sort of criteria as a guide we've

developed a set of optimizations that are embedded in some versions of the Device primitives.

The optimization library includes additional primitives. The first is a PathPoint. These are

placed in the model to create reference points for description of paths. In Figure 6 one Path Point

would be inserted between the sensors and their connections to the buses, another between the

Pilot inputs and their connection with the buses, another one between the buses and the PFC, yet

another between the PFC and the buses, and a final one between the buses and the actuators. A

PathPoint exports a memory containing its (unique) identity. A PathConnect primitive exports

two memories, ordered (source and destination), which are linked to two PathPoint memories.

Under stimulation by an initiation signal, the PathConnect primitive indicates whether there

exists at least one path from the source PathPoint to the destination. Responses from PathCon-

nect primitives can then be used to assess whether the system is operational (or is in some notable

state).

In any given system state we have associated a directed graph of components; this graph

already reflects the full effect on connectivity of all previous component failures. A graph node

representing a k-of-n component is thought to encapsulate n parallel components, each receiving

all of the components inputs and each contributing to all of the component's outputs. Now imagine

a series of m components such that all have exactly one input arc and one output arc, and such

that the next transition for each will cause it to be failed (i.e., any k-of-n component has exactly k

operational subcomponents). The next transition undergone by any one of the components in the

series removes from the graph any path that passes through that series. The aggregate transition
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Figure 6: Simplified model of flight control architecture

rate of that series is equal to the sum of the transition rates of its constituents. It is well known

that a single component with the aggregate series transition may replace the series in the graph,

without altering the probabilistic structure. Our optimizations essentially do that, but they also

do it dynamically. The substitution is not one that is done once on the initial graph structure, for

that structure wi]_l not contain all of the series it may develop as failures occur. Instead, when a

Device transition is caused by the Interface Engine and the device is pushed into a failed state,

report of this failure is sent to all of the device's predecessors and descendents in the graph. The

signal is propagated by any recipient that (i) needs only one further transition to be failed itself,

and (ii) is in series with the report source. Continuing in this fashion, each of the graph nodes

that is in series with the failing Device recognizes this, each of them alters it StateVariable to

represent failure (precluding further transition), and each of them contributes its transition rate to

an aggregate.

In an earlier approach [5] we determined whether the required sequence of paths exists by

actively pushing signals out from the sources, and noting whether any such signal reached the

necessary destination. This tactic was very costly computationally, since in a highly reliable system,

the needed paths are usually present. Another optimization we developed (whose details are beyond

the scope of this paper) approached the problem differently. Now, when a component fails, the

effect of that failure on path connectivity is automatically propagated. Instead of trying to see if a

path exists at every death-state test, we do a small amount of computation with every component

failure, and eliminate paths that are no longer viable. At the time of the death-state test, all of the

information concerning path-connectivity is immediately available. As we will see, this optimization

has profound benefits.

7 Experiments

We now briefly describe some experiments that illustrate the processing power of our combined

tool. The problem domain is the fly-by-wire flight control architecture described earlier. We are

interested here principally in processing speed, and in the effectiveness of Monte Carlo estimation.

The fly-by-wire models we considered earlier determined system safety during a death-state
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cut-off threshold exc. time (secs) path-records/sec unreliability bound

le-10

le-12

le-14

le-16

20 811 7.5e-9

36 763 5.51e-9

145 759 1.92e-ll

874 709 3.5e-13

Table 1: Processing rates for model of fly-by-wire architecture

test by broadcasting signals and noting connectivity. This proved to be one of the more severe

bottlenecks in the processing. Another was that much of the state-space analysis was programmed

within the BONES Designer graphical language. A substantial performance boost is obtained by

conducting that analysis in C, within a primitive. The processing rate of the tool was about 30

path-records per second. In order to analyze very large models, parallel processing had to be used,

for very long running times.

The model we consider now is similar in structure, but uses the approach and the optimizations

already described. The model is smaller than those used in the actual architectural studies, but in

our experience the path-record processing rate is relatively insensitive to problem size (there is of

a course a dependency on the length of the state-vectors that are copied, but this cost is relatively

insignificant compared to others). Table 1 summarizes the data, collected from runs on a 55 MHz

Sparc 10, on a largely dedicated processor with 128Mb of memory. As we decrease the cut-off

threshold, the search process generates and explores more of the underlying state-space. Naturally

then, the execution time increases, but the unreliability bound decreases. There is a factor of

forty difference in time between the run at the cut-off threshold and that of the lowest threshold,

there is a corresponding increase in the number of path-records generated. The relatively small

decrease in path-record processing rate may be attributed to the fact that at deeper levels in the

state-space, the cost of maintaining path connectivity information is a little higher, owing to more

extensive propagation of component failure effects on the model. Only at the deepest cut-off level

shown (le-16) did the sum of measured death-state probabilities exceed the sum of pruned state

probabilities; the value shown, 3.5e-13, is not larger than the true system unreliability by more than

10%. This happens because the searching is finally deep enough to undercover dominant failure

states. Finally, note that the path-record processing rates are over 200 times faster than those we

achieved in the first generation tool.

Processing rates of this order bring into reach some goals for analysis capability that have been

privately expressed to us by potential users. For instance, an architecture with 1000 components,

analyzed to three failure levels, gives rise (without optimizations) to approximately 109 path-

records. At a rate of 10 3 path-records per second, one million seconds (11.5 days) processing

time would be required. One can push this back by an order of magnitude or two, using parallel

processing. A day's execution time for a large complex architecture is deemed acceptable. Even

so, an interactive capability would be desirable, as would be a capability of handling larger still
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models.Forthis weturn to MonteCarloanalysis.
Thetechnicaldetailsof howweperformMonteCarloanalysisarefoundin [3]. Thegeneralidea

is to repeatedlychooseindependentsamplepathsthroughthe state-space,eachof whichterminates
in a death-state.On reachingthe death-state,wecomputethe probabilityof reachingthat state
within themissiontime. Thisprovidesa statisticalestimateof theoverallunreliability.Repeating
this processand averagingtheestimatesprovidesa point sampleof the unreliability,about which
confidenceintervalsmaybe constructedin the standardfashion. Provisionis also madeto use
importancesampling,whenfast recoveriesarepart of themodel.

On the specificproblemwhosetimingswereport in Table1 weused10replications(requiring
10secondsof processingtime), 100replications(requiring97 secondsof processingtime), and
4000replications(requiring420secondsof processingtime). The 10replicationrunestimatedthe
unreliability to be no morethan 8e-13,with 99%confidence.The 1000replicationrun lowered
that estimateto 4.4e-13,with 99%confidence,and the 4000replicationrun gave3.7e-13with
99%confidence.We seeherethe usualsituationwith statisticalestimation,that to tighten the
confidenceinterval by a factor of f requires a factor of f2 more samples. The key thing to note

is the amazingly good answer that is provided by Monte Carlo after only 10 seconds of processing

time. To achieve that same level of result in the exhaustive approach requires almost two orders of

magnitude more processing time.

8 Conclusions

We have developed a reliability analysis engine suited for integration into existing modeling tools.

We have accomplished this integration in the specific context of BONES Designer, a commercial

simulation modeling tool. This paper discusses the overall integration approach, and specifics

concerning integration into BONES Designer. We point out how our approach supports integrated

performance and reliability analysis, we discuss some run-time optimizations that provide fast

execution times, and discuss performance on a prototypical model. We show that our approach

brings into reach the hope of analyzing systems with hundreds of components to three failure levels.

Monte Carlo analysis allows analysis of problems with substantially larger size.

We have demonstrated the feasibility of joint and integrated performance and reliability analysis

in a common, industrial quality modeling tool. The tool extensions we've developed are experimen-

tal. W'e are continuing to explore wavs of expanding the modeling power of the combined approach,

and to further optimize run-time efficiency.
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